B体育20世纪70年代,激光作为一种新兴技术B体育,开始受到医美领域的关注。人们发现激光具有能量高度集中、单色性好、方向性强的特点,可以用来治疗某些皮肤病变,如血管瘤、纹身等。近年来,激光在医美领域的应用日益增多,受到业界的广泛关注
8月18日,中国科学院宁波材料技术与工程研究所激光极端制造研究中心揭牌仪式举行。
由于晶格、电荷、轨道和自旋等自由度之间的关联-耦合-重构,关联材料展现出丰富的物理特性。近几年发展起来的离子调控方法[Nature 546, 124 (2017)]又增添了离子这一调控自由度,同时也为材料物性研究增加了一种新的调控手段B体育。
在第24届中国国际光电博览会上,成都新源汇博光电科技有限公司(以下简称“新源汇博光电”)重磅推出掺钕浓度渐变晶体(Nd:YAG及Nd、Ce:YAG)、金刚石片、Sm:YAG晶体等新产品,展示系列YAG激光晶体材料B体育、探测器和光学元器件等,闪耀抢眼“未来之光”。
Sivers Photonics宣布,已经收到英国激光开发商Vector Photonics的初步订单,用于评估新的下一代表面耦合激光器项目的外延材料。
苏州《关于加快培育未来产业的工作意见》提出,在光子芯片与光器件领域重点开发制造应用于光制造、光通信、光传感、光医学、光显示等领域的光子芯片;重点开发基于光学材料生产制造的光学元器件。
9月5日,武汉长盈通光电技术股份有限公司(以下简称“长盈通”)公布,公司计划在武汉东湖新技术开发区投资5亿元建设新型材料产业园。据披露,为进一步践行长盈通发展战略,落实产业整体发展空间布局规划,满足未
研究合作伙伴预计,由于这一项目的发现,他们可以将该行业的潜在回收份额从之前的7%提高到30%-90%。“我们正在将最新的分析技术与最先进的软件相结合,以解决当前的环保问题。我们有望每年减少欧洲80万吨的二氧化碳排放量。
8月29日,华为扔出重磅炸弹——华为MATE 60 pro,开售不到一小时售罄。之所以此次新机型开售掀起业界惊涛骇浪,主要是因为当初中国高制程芯片被西方国家卡脖子,直接让华为业绩“震荡”,而此次动作有可能意味着华为解决了这个问题
近日,来自NIST/马里兰大学联合量子研究所的Grégory Moille证明,可利用耗散克尔孤子制造出基于芯片具有足够输出功率的光学频率梳,用于光学原子钟和其他实际应用。该研究成果将在FiO LS上发表,并于23年10月9日到12日在华盛顿州塔科马市的大塔科马会议中心举行会议
气凝胶是一种具有连续三维多孔网络结构的超轻固体材料,其独特的结构赋予其优异的热学、光学及力学等理化性质,能够对外来能量进行有效管理,在超级隔热、高效电磁屏蔽及力学防护等领域受到广泛关注。
近期,中国科学院上海光学精密机械研究所激光智能制造技术研发中心杨上陆研究员团队在第四代反应堆-熔盐堆结构材料Ni-28W-6Cr镍基高温合金激光焊接方面取得新进展。
德国研究人员及其合作伙伴宣布成功开发出一种激光焊接技术,这种技术可以高效地将光纤固定在光子集成电路(PIC)上,并且无需利用粘合剂进行粘合。
8月18日,中国科学院宁波材料技术与工程研究所激光极端制造研究中心揭牌仪式举行。
光波导是实现光电集成和光子集成的关键。在发展小型化光电器件中,可以在微观尺度传导和弯曲光的微米量级甚至纳米量级的光波导材料极为重要。光致发光分子和纳米材料作为有源波导具有潜在的应用前景,但往往受到高光学损耗的限制
近年来,飞秒激光双光子聚合技术作为一种具有纳米精度的真三维加工方式已被广泛应用于制造各种功能微结构,这些微结构在微纳光学,微传感器和微机器系统等领域展现出广阔的应用前景B体育。然而,如何利用飞秒激光实现复合多材料加工,并进一步构建具有多模态的微纳机械仍极具挑战
近期,中国科学院上海光学精密机械研究所激光智能制造技术研发中心研究员杨上陆团队,在第四代反应堆-熔盐堆结构材料Ni-28W-6Cr镍基高温合金激光焊接方面取得新进展。该研究首次将高功率光纤激光焊接技术
7月25日,华工科技发布公告称,公司全资子公司华工投资及全资孙公司华工瑞源拟与武汉光谷长江激光北斗产业股权投资合伙企业(有限合伙)、武汉光谷长江创业投资引导基金合伙企业(有限合伙)、间接控股股东武汉国创创新投资有限公司发起设立一支聚焦激光、高端装备制造、新材料等产业链的产业基金——长江华工基金
多家媒体报道指国内知名存储芯片企业长江存储的董事长指出已买回的光刻机因维护和零件问题可能无法使用,因此提出基于公平原则,ASML理应回购这些光刻机,凸显出中国芯片企业的愤怒。 由于美国的阻挠,A
美国国家标准与技术研究所(NIST)的研究人员宣布设计了一种芯片上的光子电路,它可以将单一入射激光束转换成一系列新光束,而且使每个光束都具有不同的光学特性。
哈佛大学研究人员开发了一种方法,他们打造了一个高效的集成隔离器,该隔离器可以无缝地集成到由铌酸锂制成的光学芯片中。
近期,中国科学院上海光学精密机械研究所薄膜光学实验室与高功率激光物理联合实验室开展合作研究,在基于HfO2-Al2O3混合材料的皮秒激光反射镜研究方面取得进展。
最新消息显示,通快等知名欧洲激光与光电企业将加入一个欧洲共同利益的重要项目(IPCEI),该项目专注于微电子和通信技术(ME/CT)的发展。
红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。
美国拉拢了日本、荷兰,从芯片设备方面进一步加码限制中国芯片,不过日前知名院士倪光南认为中国在存储芯片方面拥有自己的核心知识产权,不会受EUV光刻机的限制所影响。 据了解目前全球主流的NAND f
6月20日,圣昊光电投资建设的芯片检测及关键设备研发生产基地研发楼正式完成封顶,此次封顶标志着项目向早日竣工投入使用迈出了坚实一步。公司将集中精力,全力以赴推进芯片检测及关键设备研发生产基地项目如期投入使用
近日,英国领先的光纤通信与III-V半导体光子学器件供应商Sivers Photonics表示,目前正在进行全面评估以提高自身运营能力,以满足每周超过1000片晶圆的批产量目标。
近日,来自澳大利亚国立大学(ANU)和阿德莱德大学的一组物理学家宣布,通过使用纳米粒子开发新的光源,他们能够观察到比人类头发小数千倍的极小物体的世界,这有望为医学和其他技术方面带来重大进展。
随着当今液晶面板大尺寸、高清化的电子市场行业的迅速发展,现代企业生产出更小、更加精密的电子产品将是一个必然趋势,芯片也将以更精更小为主,作为电子行业里不可或缺的下游产业载带
近日,长光华芯发布56G PAM4 EML光通信芯片,进入光芯片高端市场,开启广阔增长空间。数据中心是算力的载体,AI服务器对于底层数据的传输速率和时延要求非常高,对应的架顶交换机需匹配底层较大的数据传输带宽,且极低的时延冗余,这需要高速率的光模块进行匹配
近年来,随着全球流量快速增长,互联网、人工智能和云计算应用场景不断增多,作为未来高速通信趋势之一的光子芯片也迎来了黄金发展期。与其“前辈”电路一样,光路也在小型化、降功耗和低成本的呼声要求中逐步走向集成化,集成光芯片(PIC)应运而生,成为现代通信产业中不可忽视的重要一环
近日,布朗大学(Brown University)的研究人员宣布开发出一种散射型扫描近场显微镜(s-SNOM)方法,这一方法能够使用蓝光来测量半导体中的电子,以及一些纳米级材料。
文/陈根日前,《光:科学与应用》杂志上,发表了布朗大学研究人员的一项新的显微镜技术。作为纳米级成像领域的首次尝试,该技术利用蓝光测量半导体和其他纳米级材料中的电子,为研究这些关键部件开辟了一个新的可能性领域,也为一个长期存在的问题提供了解决方法
德国通快、Fraunhofer ILT、DESY组成的联合团队首次清晰地证明,通过使用绿色波长的激光器,在焊接高性能电子产品时可以节省原材料。
作者:程诺,编辑:小市妹随着AIGC商业化应用的加速落地,背后所需算力基础设施的海量增长已成为必然趋势,推动着数据中心向更高速率和更高性能方向加速发展,并直接拉动光模块增量。作为光模块的最核心元件,光芯片具备光转电、电转光等基础光通信功能,其性能直接决定了光模块的传输速率B体育,是光通信产业链的重要环节
近日,荷兰特温特大学衍生分支New Origin宣布斩获600万欧元资金,投资方为荷兰知名的光子芯片技术组织及产业生态系统平台PhotonDelta。
在全球诸多经济体当中,此前推动芯片产业发展都是依托于全球现有的芯片产业链发展,然而在美国悍然修改芯片规则的情况下,中国却逐渐形成了自己的芯片产业链,成为唯一拥有全产业链的国家。 在以往的芯片产业
美国国家标准与技术研究所(NIST)的研究人员宣布了一项重要研发进展:他们成功开发了一种芯片级设备,该设备可以同时操纵多束激光的波长、焦点、运动方向和偏振。
分析机构给出了2022年全球十大芯片代工厂的业绩,发现中国芯片制造企业的表现尤为亮眼,增速远超台积电,显示出美国的限制反而推动了中国芯片的崛起,无疑让美国颇为失望。 分析指出2022年中国已有三
在诸多纠葛之后,日本最终决定跟随美国,停止对中国供应23种芯片设备,此举对中国芯片产业固然会带来一定打击,但是对于日本芯片产业的打击将更大,甚至可以说对日本芯片产业来说是灭顶之灾。 一、日本芯片